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Hardware-based Artificial Neural Networks for Size, 
Weight, and Power Constrained Platforms 

 
B. T. Wysocki, N. R. McDonald, and C. D. Thiem 

Air Force Research Laboratory, Information Directorate Rome, NY 
 
 

Abstract— A fully parallel, silicon-based artificial neural network 
(CogniMem CM1K) built on zero instruction set computer 
technology was used for change detection and object 
identification in video data.  Fundamental pattern recognition 
capabilities were demonstrated with reduced neuron numbers 
utilizing only a few, or in some cases one, neuron per category.  
This simplified approach was used to validate the utility of few 
neuron networks for use in applications that necessitate severe 
size, weight, and power restrictions.  The limited resource 
requirements and massively parallel nature of hardware-based 
artificial neural networks make them superior to many software 
approaches in resource limited systems, such as micro-UAVs, 
mobile sensor platforms, and pocket-sized robots.   

Keywords -- artificial neural networks; Size, Weight and Power 
(SWaP); radial basis function; zero instruction set computing 
(ZISC); pattern recognition 

I.  INTRODUCTION 
There exists a potential for disruptive enhancements to 

Department of Defense (DoD) capabilities and efficiencies 
through the development of autonomous human-system 
interactions.  Intelligent platforms that collaborate with their 
human operators have the capacity to enhance and complement 
the human capability while reducing tedium and adding 
resiliency and adaptability to current systems.  Programmable 
machines are limited in their ability to address such fuzzy 
combinatorially complex scenarios.  Neuromorphic processors, 
which are based on the highly parallelized computing 
architecture of the mammalian brain, show great promise in 
providing the environmental perception and comprehension 
required for true adaptability and autonomy.   

The increasing resolution and speed of today’s advanced 
sensor platforms provide an overwhelming and exponentially 
growing supply of data, which has subsequently created a 
demand for autonomous pattern recognition systems that scour 
raw or preprocessed data in an effort to extract meaningful 
information [1 - 3].  The improved processing power of modern 
high performance computers enables implementation of large, 
sophisticated pattern recognition systems based on statistical 
analysis and neural network schemes.  This latter approach is 
the subject of several large-scale efforts to create electronic 
systems that mimic behaviors in the brain.  This fundamentally 
different approach, frequently referred to as neuromorphic 
computing, is thought to be better able to solve fuzzy 
perception and classification problems historically difficult for 
traditional, von Neumann-based computers.  

The neuromorphic community was revitalized when, in 
2008, memristive devices were brought to public attention by 

Hewlett Packard (HP) [4], though devices possessing similar 
behavior, as predicted by Leon Chua in 1971 [5], had been 
observed since the 1970s [6 - 9].  These “memory resistors” 
possesses several attributes which make them effective 
hardware incarnations of biological synapses.  First, these two-
terminal devices function as variable resistors, satisfying the 
“learning” requirement seen in real synapses.  Additionally, 
these devices are non-volatile.  Unlike transistors, each 
memristive device’s state persists even in the absence of 
applied power.  Lastly, these devices exhibit this behavior even 
in the nanoscale regime.  For traditional computing, these 
properties could lead to instant-ON computers or non-volatile 
field-programmable gate arrays (FPGAs).  These devices 
potentially offer to neuromorphic circuit engineers the means to 
achieve the density, reconfigurability, and low power 
requirements needed to build analog neural circuitry.  
Memristive technology, however, must mature before it can be 
utilized in such designs.  Memristor-built non-volatile memory 
is expected to be commercially available by 2014 [10], and HP 
predicts that memristive memory will eventually replace 
FLASH, solid state, and DRAM as a universal memory format 
[11].  Due to the disruptive nature of technology developments 
and to the exponential growth of technology as a whole, it is 
difficult to predict when, or if, memristive technology will 
enable neuromorphic thinking machines.  Recent advances in 
silicon-based artificial neural networks (ANNs) offer an 
alternative approach with many of the capabilities desired in 
future memristive systems but which are available now, CMOS 
compatible, and inexpensive. 

Neuromorphic computing goals such as emulating 
mammalian brains prove daunting due to the processing power 
required to emulate all 4 million neurons of even a mouse’s 
brain, much less that of a household cat, with approximately 
300 million neurons.  At the same time, extraordinary examples 
of pattern recognition and behavior are evident throughout the 
animal kingdom with significantly fewer neurons.  For 
example, the roundworm, with 302 neurons and 8,000 
synapses, can sense and track waterborne chemical signatures 
and navigate towards their locations [12].  We have found in 
our experimentation with hardware-based neural networks that 
useful applications can be realized with relatively few active 
neurons.  In fact, in one instance, only a single neuron was 
required to enable relevant change detection in a video 
surveillance system.   Limited neuron approaches employed 
near the sensor may be used to reduce large data sets, saving 
critical transition bandwidth while reducing the burden on 
analysts and system operators. 

Hardware-based ANNs are ideally suited for mobile or 
portable platforms with strictly limited size, weight, and power 
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(SWaP) resources.  The robotics industry (currently a $10 
billion enterprise) is poised for exponential growth with an 
expected commercial market of over $15 billion by 2015 [13].  
As an enabling technology, ANNs will play a substantial role 
in the development of autonomous and semi-autonomous 
robots for use in industrial, commercial, and military markets.  
The demand for small, mobile, battery-powered systems will 
favor low-energy hybrid processing units consisting of both 
standard microcontrollers and hardware-based neural networks 
on the same chip.  The parallel nature of these neural co-
processors makes them superior over software techniques for 
SWaP restricted applications.   

Our research focuses on the implementation of real-time 
ANN pattern recognition in platforms with severe SWAP 
constraints, such as micro-UAVs, mobile sensor platforms, and 
pocket-sized robots.  These restrictions practically rule out 
traditional software approaches which often run too slowly due 
to the inherent serial nature of von Neumann architectures or 
require high performance processing for operation.  Hardware 
implementation provides a reduced footprint with the 
additional benefit of massively parallel execution.  While nano-
enabled neuromorphic architectures are extremely promising, 
their realization will take time. Meanwhile, there exist 
commercially available technologies today that offer partial 
solutions.  In particular, parallel processing capabilities are 
afforded by FPGAs [14] and general-purpose computing on 
graphics processing units (GPGPUs).  With the recent 
availability of application-specific integrated circuits (ASIC) 
based on zero instruction set computing (ZISC), not only is 
there an even greater reduction in footprint and power but also 
native support for massively parallel operation.  It is technically 
feasible using current state-of-the-art fabrication techniques at 
the 22 nm node to manufacture ASIC ANN chips approaching 
500,000 parallel neurons. 

This paper will first examine the current state of memristive 
development with emphasis on architectural and fabrication 
challenges followed by a review of the technical aspects of the 
CM1K ASIC chip and its ZISC operation.  Next, two 
experiments demonstrating change detection and object 
recognition in live video feed will be presented.  Lastly, the 
results of these experiments will be used to weigh in on two 
competing perception paradigms: few sensors/complex 
computations, and many sensors/simple computation. 

 

II. CHALLENGES WITH NANO-ENABLED NEUROMORPHIC 
CHIPS 

A wide variety of technologies can be classified as 
“memristive devices” including resistive random access 
memory (ReRAM), phase change RAM (PCRAM), 
magnetoresistive RAM (MRAM), and spin-transfer torque 
MRAM (SST-RAM).  While all these devices operate under 
different physical principles, they all possess two key 
attributes: 1) variable resistance and 2) non-volatility.  Despite 
all the progress that has been made in memristive devices over 
the past several years, commercial memristive device products 
are still unavailable. 

There are two critical tasks for successful memristive 
device integration with CMOS: manufacturability and 
usability.  Concerning the former, the devices to be used must 
consist of materials that are permitted inside a CMOS foundry, 
which further restricts the materials allowed in the front end of 
line (FEOL) as compared to the back end of line (BEOL).  All 
the processing steps needed to make the devices’ structure 
must be scalable to fabricate devices en masse.  Lastly, the 
devices must be all functionally identical (though some 
applications may actually exploit device non-uniformities).  
Part of the difficulty of manufacturing memristive devices is 
that the physics of device switching is not well understood at 
nanometer size scales.  In particular, ReRAM (of which 
PCRAM is a subset) may be composed of binary metal oxides, 
chalcogenides, or perovskites, among other materials, and 
switch due to filament formation, vacancy migration, phase 
change, or other processes [15].  At these scales, small 
variations in the device size or material composition often 
have large effects upon subsequent device switching 
parameters. 

However, because of this variety of materials and 
mechanisms, different device resistance values, switching 
voltages, and switching times are available to the circuit 
designer.  When considering the appropriate device metrics of 
reliability and endurance that must be attained, one must first 
consider the intended use of the device.  For von Neumann 
computing applications, if these devices are to replace Flash or 
SRAM, then endurance cycles of about 106 and write speeds 
of a couple tens of nanoseconds must be achieved, 
respectively.  Even if memristive devices cannot meet these 
requirements, SWAP savings may still be achieved by 
strategically replacing some transistors in a circuit.  For 
devices used in neuromorphic applications, the range of 
addressable resistance values and the operative voltages will 
be more critical than the write speed.  Because of these varied 
ends, there will likely be a variety of memristive device 
“flavors” available to the circuit designer in the future. 

In the meantime, ZISC neural networks may be usable to 
partially replicate some of the anticipated advantages of a 
memristive device-based hardware neural network.  In this 
way, learning algorithms and neural network structures may 
be further developed now and subsequently mapped onto 
memristive device technology if and when it becomes 
available. 

 

III. A HARDWARE-BASED ARTIFITIAL NEURAL NETWORK 

A. Chip Specifications 
A fully parallel, silicon-based neural network chip (CM1K) 

developed by CogniMem Technologies Inc., based on IBM’s 
earlier series of ZISC chips [16,17], was used in this work.  
The CM1K is configured with two available types of non-linear 
classifiers: a Radial Basis Function Network (RBF) and a K-
Nearest Neighbor classifier (KNN).  The chip possesses 1024 
neurons, each with its own memory for trained signature 
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storage and a processor for recognition and distance 
calculations. The memory within every neuron contains 256 
elements, each with an 8-bit capacity for a total of 256 bytes of 
information per neuron.  The identical neurons learn and 
respond to vector inputs in parallel while they incorporate 
information from all the trained neurons in the network through 
a bi-directional parallel neuron bus.  Execution of the 
recognition logic is independent of the number of participating 
neurons, and multiple chips can be cascaded in parallel for 
scalable implementation.  Figure 1 shows the general topology 
of such a restricted coulomb energy network.  CogniMem 
recently demonstrated a cascaded network of 100 chips with 
over 100,000 parallel neurons, all contained within 1/10 of a 
cubic foot and consuming less than 20 Watts of power yet 
performing at a level equivalent to 13.1 Teraops of pattern 
recognition performance [18].  Additional details regarding 
CM1K operation and architecture may be found in [19,20] 

 
 

B. Operational Parameters 
In such an architecture, the operational status of each 

neuron can be in one of three possible states: idle, ready-to-
learn, and committed.  The idle neurons are empty of 
knowledge but can be trained sequentially with the next neuron 
in the chain configured in the ready-to-learn state.  Once a 
neuron is trained it becomes committed and any pre-existing 
influence fields are adjusted to accommodate the new 
knowledge.  During recognition, the input vector is passed to 
all the committed neurons in parallel, where it is compared to 
the stored vector or trained prototype.  If the distance between 
the input vector and a neuron prototype falls within the 
influence field, the neuron “fires” generating local output 
signals consisting of fire flag, signal distance, and category 
type.  In the case that no neurons fire, the input signal can be 
used to train the ready-to-learn neuron with the unrecognized 
signature.  This provides the means for recognition and training 
to be accomplished simultaneously.  A sample visual cue and 
grey scale image of the vector signature within a neuron’s 
memory is given in Figure 2. 

 

IV. PLATFORM DESIGN 
The video surveillance system is designed to monitor a live 

video scene and alert an analyst when an event of interest (an 
intrusion) has occurred. Our system utilizes the CM1K chip as 
part of the CogniMem V1KU evaluation module specifically 
designed for video and image prototype development.  Our 
control software communicates with the V1KU through a USB 
connection to a microcontroller.  A graphical user interface 
(GUI) was built in JAVA to facilitate training and evaluation.  
The system does not transmit or store the active video feed 
until the ANN has determined that an intrusion event has 
occurred with the intent to optimize the transmission bandwidth 
for mobile or wireless platforms.  

 
The program scans at 60 frames per second live video feed 

and compares the region of interest to those trained into the 
neurons memory.  Fine tuning of neuron sensitivity for a 
specific signature can be manually adjusted by adjusting the 
neuron active influence field or the distance from ideal, where 
a neuron will still recognize the target as a specific category.  
The distances can be calculated using one of two norms: the 
Manhattan method or the Lsup method.  In the Manhattan 
method, 

 ,
1

∑
=

−=
n

i
iiMan PVD  (1) 

 
 
Figure 1: Neural Network Diagram. Each input node 
accepts a maximum of 256 elements (xN), each with 8-bit 
resolution.  These are fed in parallel to up to 1024 neurons.  
All recognition events are passed through to the output 
layer with the associated category and confidence level. 

 a) 

 b) 
Figure (2): a) A captured video frame showing the subject 
in its input resolution.  b) A pictorial representation of the 
neuron content trained with the above image. 

3



where DMan is the sum of the differences between n 
dimensional vector signatures Vi and Pi.  In the Lsup method, 

  
,sup iiL PVMaxD −=             (2) 

where DLsup is the maximum separation of Vi and Pi. 

Manhattan distances were chosen for our design to 
emphasize the general differences between signatures with 
equal weights on all components.  A neuron fires when the 
input vector lies within a specified distance, that is, falls within 
the influence field of a neuron in the decision space.   

V. EXPERIMENTS IN MINIMAL NEURON REQUIREMENTS 

A. Changes Detection in Live Video 
We examined the problem of change detection in video 

surveillance with the intent of utilizing the least amount of 
processor resources.  We started with the straightforward task 
of monitoring the entry point into a room for any activity.  A 
single neuron was trained to recognize an image of the entry 
point.  The neuron’s influence field was manually adjusted to 
the sensitivity required to detect a subtle change to the field of 
view.  The native monochromatic video feed to the CM1K was 
progressive scan at 752x480 pixel resolution and 60 frames per 
second while the neuron memory was scaled down to 187 
elements each with 8-bit depth.  While maintaining the context 
of the broadcast vector, it required N+2 clock cycles to pass the 
input to the network. With the CM1K clocked at 27 MHz or 37 
ns per clock cycle, the broadcast of our 187 element input 
vector took only 7.0 µs.  A block diagram of the complete 
system configuration is shown in Figure 3. 

Despite the low resolution of the stored prototype (187 
bytes), the system reliably responded to changes in the 
camera’s field of view (FOV) or to more localized changes in a 
region of interest within the FOV.  In this case, the system was 
programmed to alert a human analyst of any change and to 
capture images of the disturbance for review.  Data capture and 
transmission continued until the intrusion moves outside the 
sensor’s FOV.  It is important to mention that although we 
implemented our system under the control of a personal 
computer, the ZISC chip learns and recalls patterns without 
internal code or the need for constant external supervision.   

This simple implementation of a single neuron for video 
change detection proved to be very reliable over a 36 hour 
period of entryway monitoring identifying 26 events with zero 
false positives and zero missed occurrences. 

 

B. Specific Target Recognition 
Pattern recognition in complex scenes often plagues ANNs, 

since a subject’s spatial orientation along with environmental 
variables such as lighting and background affect the system’s 
ability to accurately perceive the target.  These inconsistencies 
can be addressed using three basic techniques: increasing the 
number of neurons to account for variability, preprocessing the 
video to reduce variance, and controlling the environment or 
setting of the scan.  While applications exist where control over 
situational effects can be adequately controlled by engineering 
the platform’s environment [20], reducing the variance in video 

streams can be particularly challenging due to the inherent 
inclusion of erroneous and unpredictable background effects 
[21]. 

In this portion of the experiment, we tested the system’s 
ability to detect specific targets in a controlled setting.  
Simulated vehicle traffic was monitored at the entrance point of 
a scaled model parking facility.  A video camera monitored the 
incoming traffic (remote controlled cars), and the system 
alerted an attendant when either an unrecognized vehicle or a 
prespecified vehicle approached the gate.  For this experiment, 
a pool of four vehicles under constant lighting was used.  A 
single neuron was sufficient to identify a particular vehicle 
(Figure 4).  Since these neurons do not interpolate data, all 
flagged images had to be consistent with the orientation of the 
trained image.   

With as few as one neuron per vehicle the system 
accurately identified each of the four vehicles and subsequently 
notified the analyst when a specifically flagged or 
unrecognized vehicle approached.  Additional training was not 
required as long as the environmental aspects were held 
constant but improved reliability when environmental controls 
were lessoned. 

The number of neurons required to distinguish N objects 
did not grow linearly but at a much faster rate, such that 257 
neurons were required to properly categorize 34 distinct targets 
under very controlled conditions.  The realm of applications 
within a single processor’s 1024 neuron capacity is significant 
but the need for additional performance through cascaded chips 
is required for complex relationships.  Using this platform, we 
plan to construct a 100,000+ parallel neuron network for 
additional research.   

VI. RESULTS AND DISCUSSION 
These two simplified tests illustrate that useful ANN 

systems can be designed to operate with extremely limited 
resources for use in SWAP constrained platforms.  A nonlinear 
relationship was found between the number of prototype 
categories and the number of neurons required for 

 
 
Figure 3: A block diagram depicting the system 
configuration. 
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identification, highlighting the need for increased density, low-
power chip designs. 

SRAM currently serves as the neuron’s memory in this 
integrated circuit which consumes a significant amount of 
wafer real-estate and requires substantial energy resources for 
periodic refreshing.  SRAM typically uses six transistors for 
storage and control of a single bit of CMOS memory.  
Additionally, since all the neuron knowledge is presently stored 
in SRAM, it must be saved off-chip in Flash when power is 
removed.  Such requirements severely reduce the achievable 
density in SRAM-based neural networks.  As mentioned 
previously, memristive devices hold great potential for the 
development of ultra-high density memory with reduced 
resource requirements.  The non-volatile nature of memristive 
memory could lead to super-efficient ANNs that lay dormant 
without consuming power, ready to instantly respond when 
needed.  By selectively replacing certain SRAM and DRAM 
transistors with CMOS-compatible memristive devices, ANNs 
can subsequently achieve increased density, reduced power, 
and instant-ON capabilities.  

As was shown in both of the previous examples, a single 
neuron in this system was sufficient to achieve reasonable 
discrimination for pattern recognition.  Coarse resolution in 
trained neurons may not necessarily be something that must be 
improved upon.  In general, modern environmental processing 
relies heavily upon a small number of high resolution sensors 
and a computer capable of solving complex differential 
equations in real time.  It is very unlikely that flying insects are 
performing such computationally intensive sensor processing 
in their brains.  Rather, such biological systems perform simple 
computations using measurements from numerous crude 
sensors.  This is called the sensor-rich feedback control 
paradigm.  For example, it is thought that a fly determines a 
global vector representing how the fly is moving with respect 
to its environment.  From observed vector patterns, select 
neurons fire when preferable flight directions are identified 
[22].  Extending this many sensors/limited computation 
paradigm to autonomous systems is a natural progression 
towards bio-inspired computation.  

 

VII. CONCLUSIONS 
A fully parallel, silicon-based ANN was used to monitor 

video data.  In this work, change detection and simple object 
recognition were demonstrated with reduced neuron numbers 
utilizing only a few, or in some cases one, neuron per category.  
This simplified approach was used to validate the utility of few 
neuron networks for use in applications that necessitate severe 
SWAP restrictions.  The limited resource requirements and 
massively parallel nature of hardware-based ANNs make them 
superior to many software approaches in such resource limited 
systems, such as micro-UAVs, mobile sensor platforms, and 
pocket-sized robots.  These fully CMOS compatible designs 
will likely play a substantial role in the development of semi-
autonomous robotic platforms. Configurations having 
multitudes of crude sensors connected to layered ANNs will 
more closely emulate the structure of biological systems and 
may outperform systems which rely upon brute forcing 

complex equations upon data from a few high resolution 
sensors. 

 

ACKNOWLEDGMENTS 
This work was performed at Air Force Research Laboratory 

Information Directorate, Rome, NY leveraging funding from 
AFOSR’s test and Evaluation Program.   Approved for Public 
Release (PA Case # 88ABW-2012-5205 01 Oct 2012); 
distribution unlimited. 

 

 a) 

 b) 

 c) 
 
Figure 4: a) Profile view of one of the vehicles recognized 
by one neuron.  b) A pictorial representation of the neuron 
content trained with the above image. c) A plot of the 
neuron’s prototype vector. 
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